Calcolare il M.C.D. e il m.c.m. tra i seguenti monomi:
a) $9x^3y^2z$, $27x^4yz$ e $3x^2y^4z^2$.
b) $16x^3y^2$, $40x^4y$ e $4x^2y^4z^2$.
c) $\displaystyle \frac{2}{3}x^3y^2$, $40x^4y$ e $4x^2y^4z^2$.
SOLUZIONE
a) $\displaystyle M.C.D. ( 9x^3y^2z, 27x^4yz, 3x^2y^4z^2)=3x^2yz$.
$\displaystyle m.c.m. ( 9x^3y^2z, 27x^4yz, 3x^2y^4z^2)=27x^4y^4z^2$.
b) $\displaystyle M.C.D. ( 16x^3y^2$, $40x^4y$ e $4x^2y^4z^2)=4x^2y$.
$\displaystyle m.c.m. ( 16x^3y^2$, $40x^4y$ e $4x^2y^4z^2)=80x^4y^4z^2$.
c) $\displaystyle M.C.D. ( \frac{2}{3}x^3y^2$, $40x^4y$ e $4x^2y^4z^2)=x^2y$.
$\displaystyle m.c.m. ( \frac{2}{3}x^3y^2$, $40x^4y$ e $4x^2y^4z^2)=x^4y^4z^2$.