Calcolare l’area sottesa al grafico di \(f(x) = x^2\) nell’intervallo \([1, 3]\).
SOLUZIONE
L’area \(A\) sottesa al grafico di \(f(x) = x^2\) nell’intervallo \([1, 3]\) è data dall’integrale definito: \[ A = \int_{1}^{3} x^2 \, dx = \left[\frac{x^3}{3}\right]_{1}^{3} = \frac{3^3}{3} – \frac{1^3}{3} = \frac{9}{3} – \frac{1}{3} = \frac{8}{3} \]