Risolvere la seguente disequazione frazionaria:
$\displaystyle \frac{1}{x^2-x}-\frac{1}{x}\ge\frac{2}{x-1}$
SOLUZIONE
$\displaystyle \frac{1}{x(x-1)}-\frac{1}{x}\ge\frac{2}{x-1}$
$\displaystyle \frac{1}{x(x-1)}-\frac{1}{x}-\frac{2}{x-1}\ge0$
$\displaystyle \frac{1-1(x-1)-2x}{x(x-1)}\ge0$
$\displaystyle \frac{1-x+1-2x}{x(x-1)}\ge0$
$\displaystyle \frac{2-3x}{x(x-1)}\ge0$
Studio del segno:
$N\ge0$: $2-3x\ge0$; $\displaystyle x\le\frac{2}{3}$
$D_1>0$: $x>0$
$D_2>0$: $x-1>0$; $x>1$
$\displaystyle S=\{x\in \mathbb{R}\:| x<0 \vee \frac{2}{3}\leq x<1\}$