Determinare l’insieme immagine della funzione $\displaystyle y=x^2-4x+2$.
SOLUZIONE
Riscriviamo l’equazione esplicitandola rispetto alla $\displaystyle x$:
$\displaystyle x^2-4x+2-y=0$, applichiamo la formula risolutiva delle equazioni di secondo grado:
$\displaystyle x=2 \pm \sqrt{2+y}$, quindi $y\geq -2$.
L’insieme immagine è $Imf=\{y\in\mathbb{R}\:|\:y\geq -2\}$.