Risolvere le seguenti disequazioni:
1) $3x\leq 4$;
$\displaystyle \frac{3x}{3}\leq \frac{4}{3}$;
$\displaystyle x\leq \frac{4}{3}$
$\displaystyle S=\{ x\in \mathbb{R} \:| x\leq \frac{4}{3}\}$
2) $-x>3$;
$x<-3$
$\displaystyle S=\{x\in \mathbb{R} \:| x<-3\}$
3) $-5x\geq 3$;
$5x\leq -3$;
$\displaystyle \frac{5x}{5}\leq -\frac{3}{5}$;
$\displaystyle x \leq -\frac{3}{5}$;
$\displaystyle S=\{x\in \mathbb{R} \:| x\leq-\frac{3}{5}\}$
4) $2x>4$;
$\displaystyle \frac{2x}{2}> \frac{4}{2}$;
$\displaystyle x> 2$
$\displaystyle S=\{x\in \mathbb{R} \:| x>2\}$
5) $5(x-3)<3(x+2)+2x-3$;
$5x-15<3x+6+2x-3$;
$5x-3x-2x<15+ 6-3$;
$0<18$ disequazione sempre verificata, ovvero $S=\mathbb{R}$